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Fluorescence Molecular Tomography: A New Volume Reconstruction Method 

 

Stephen Joseph Shamp 

 

Abstract 

Medical imaging is critical for the detection and diagnosis of disease, guided biopsies, 

assessment of therapies, and administration of treatment. While computerized 

tomography (CT), magnetic resonance imaging (MRI), positron emission tomography 

(PET), and ultra-sound (US) are the more familiar modalities, interest in yet other 

modalities continues to grow.  Among the motivations are reduction of cost, avoidance of 

ionizing radiation, and the search for new information, including biochemical and 

molecular processes. Fluorescence Molecular Tomography (FMT) is one such emerging 

technique and, like other techniques, has its advantages and limitations.  FMT can 

reconstruct the distribution of fluorescent molecules in vivo using near-infrared radiation 

or visible band light to illuminate the subject. FMT is very safe since non-ionizing 

radiation is used, and inexpensive due to the comparatively low cost of the imaging 

system. This should make it particularly well suited for small animal studies for research.  

A broad range of cell activity can be identified by FMT, making it a potentially valuable 

tool for cancer screening, drug discovery and gene therapy.   

 

Since FMT imaging is scattering dominated, reconstruction of volume images is 

significantly more computationally intensive than for CT.  For instance, to reconstruct a 
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32×32×32 image, a flattened matrix with approximately 10
10

, or 10 billion, elements 

must be dealt with in the inverse problem, while requiring more than 100 GB of memory. 

To reduce the error introduced by noisy measurements, significantly more measurements 

are needed, leading to a proportionally larger matrix.  The computational complexity of 

reconstructing FMT images, along with inaccuracies in photon propagation models, has 

heretofore limited the resolution and accuracy of FMT.  

 

To surmount the problems stated above, we decompose the forward problem into a 

Khatri-Rao product.  Inversion of this model is shown to lead to a novel reconstruction 

method that significantly reduces the computational complexity and memory 

requirements for overdetermined datasets.  Compared to the well known SVD approach, 

this new reconstruction method decreases computation time by a factor of up to 25, while 

simultaneously reducing the memory requirement by up to three orders of magnitude.  

Using this method, we have reconstructed images up to 32×32×32.  Also outlined is a 

two step approach which would enable imaging larger volumes.  However, it remains a 

topic for future research. 

 

In achieving the above, the author studied the physics of FMT, developed an extensive 

set of original computer programs, performed COMSOL simulations on photon diffusion, 

and unavoidably, developed visual displays. 
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1. Introduction 

Fluorescence Molecular Tomography (FMT) is a medical imaging technology which uses 

near-infrared radiation or visible band light to illuminate and reconstruct the distribution 

of fluorescent molecules in deep tissue [1].  FMT systems provide functional medical 

imaging using non-ionizing radiation and relatively inexpensive components.  A broad 

range of cell activity can be identified, making FMT a potentially valuable tool for cancer 

detection, drug discovery and gene therapy [2].  However, obstacles must be overcome 

before this potential can be realized; the resolution, imaging volume , and accuracy of 

FMT imaging is currently limited by the computational complexity of reconstruction and 

inaccuracies in photon propagation models.  It is expected that improvements in these 

areas would facilitate high resolution imaging of deep structures in vivo, making FMT 

suitable for many applications. 

 

To acquire imaging data, the tissue of interest is illuminated with laser light with a 

wavelength of 650-900 nm; These 'excitation' photons interact with the tissue as they 

travel though it, undergoing scattering and absorption interactions [1]; see Figure 1 for a 

simple schematic of these photon-matter interactions.  For many biological tissues in this 

spectral window photon propagation is "scattering dominated", typically with scattering 

interactions several orders of magnitude more common than absorption interactions [3].  

Since absorption is low in this spectral window, a significant proportion of excitation 
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photons travel several cent

high scattering and low absorption, the transport of photons may be modeled by the 

diffusion approximation to radioactive transport theory 

As the excitation photons diffuse

molecules in the tissue; 

subject or be produced by 

excitation photon interact

and a 'fluorescent' photon of longer 

These fluorescent photons

tissue [2].  

Figure 

2 

photons travel several centimeters or more into the tissue [1].  Under such conditions of 

high scattering and low absorption, the transport of photons may be modeled by the 

diffusion approximation to radioactive transport theory [4].   

Figure 1. Photon-Matter Interactions 

As the excitation photons diffuse through the media, they also interact with fluorescent 

; These fluorescent molecules can either be injected into the 

or be produced by the subject due to genetic modification 

excitation photon interacts with a fluorescent molecule, the excitation photon is absorbed

' photon of longer wavelength is emitted, this is shown in 

These fluorescent photons then undergo a similar diffusion-like transport 

 

Figure 2.  Simplified Jablonski Energy  Diagram 

Under such conditions of 

high scattering and low absorption, the transport of photons may be modeled by the 

 

through the media, they also interact with fluorescent 

These fluorescent molecules can either be injected into the 

subject due to genetic modification [2].  When an 

the excitation photon is absorbed 

, this is shown in Figure 2.  

like transport through the 
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 Some of these fluorescent photons diffuse to the surface of the tissue, where they can be 

detected by direct contact detectors such as optical fibers [5] or non-contact detectors 

such as CCD or CMOS cameras [1] [2].  By using appropriate filters, both the intensity of 

fluorescent photons and excitation photons at the tissue surface can be measured.  The 

normalized born approximation can then be calculated by dividing the intensity of 

fluorescent photons by that for excitation photons, leading to better experimental data by 

canceling out the effects of detector quantum efficiency and source strength, and 

reducing deviations from the model introduced by heterogeneous optical properties of the 

tissue [5].   

 

Figure 3.  Simplified FMT Imaging System 

By illuminating the subject with a sufficient number of sources, one at a time, and 

measuring the resulting fluorescent and excitation light distribution with a sufficient 

number of detectors, the distribution of fluorochrome inside the subject can be 

reconstructed.  The first step in this reconstruction is to discretize the tissue volume into a 

set of  three-dimensional volumetric pixels, also known as voxels.  A model is then used 

�� �� 

Imaging 

Plane Imaging Chamber with 

Animal or Plant Inside 

Excitation  

Light Source 

Fluorescent 

Tissue 
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to estimate the photon propagation from each source to each voxel to each detector, this 

is called the forward model [1].  The data from the forward model and imaging 

measurements can then be written as a system of linear equations, ��� = � × �, 

where � is the flattened weight matrix generated by the forward model, ��� is a column 

vector of normalized experimental measurements, and � is a column vector of the 

unknown fluorochrome concentrations in the voxels [2].  Solving this system of linear 

equations is called the inverse problem, or reconstruction, and results in an estimate of 

the fluorochrome concentration, �̂.  The inverse problem for FMT is significantly more 

computationally intensive than for CT; the photon propagation in this wavelength 

window is scattering dominated, therefore filtered back projection cannot be used.  

Instead, typical reconstruction methods include Moore-Penrose pseudoinverse of the 

matrix � by singular value decomposition [2], and iterative methods such as the 

algebraic reconstruction technique with randomized projection order (R-ART) [1] [2].   

 

To reduce the computational complexity of reconstruction, we decompose the forward 

problem into a Khatri-Rao product.  Inversion of this model leads to a novel 

reconstruction method that significantly reduces the computational complexity and 

memory requirements for overdetermined datasets.  Compared to the well known singular 

value decomposition based approach, this new reconstruction method decreases 

computation time by a factor of up to 25, while simultaneously reducing the memory 

requirement by up to three orders of magnitude.  An example of an image reconstructed 

using this novel reconstruction method is shown in Figure 4. 
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Figure 4. Reconstruction Using SVD
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Reconstruction Using SVD-KR.  Montage on left, 3-D render
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ering on right. 
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2. Review of Literature 

2.1. Experimental Techniques for Acquiring FMT Imaging Data 

The first step in collecting in vivo experimental imaging data typically involves 

introducing a fluorescent agent into the subject.  This is done in one of two ways.  The 

first method is to inject a solution containing one or more different fluorochromes into 

the subject shortly before imaging [2].  The fluorochrome gets distributed throughout the 

subject by bulk transport and diffusion, and in the process the fluorochrome interacts with 

and binds to its biological target.  A variety of fluorochromes are commercially available; 

they are divided into families with different biological targets, including antibody 

conjugated molecular probes, nucleic acid probes, fluorescent proteins, reactive probes, 

and cell function probes.  Alternatively, a gene that expresses a fluorescent protein can be 

introduced into an organism, allowing for the measurement of gene expression and 

regulation [2]. 

 

The next step is to collect imaging data using an FMT imaging system.  Current FMT 

imaging systems fall into two major categories, direct contact and non-contact.  In direct 

contact imaging systems, optical fibers used both to illuminate the tissue and measure 

fluorescence are in direct contact with the surface of the tissue, or paired to the surface by 

use of a matching fluid with optical properties similar to the tissue [2].  The advantage of 

direct contact imaging systems is that the shape of the tissue surface does not have to be 
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known or measured since the tissue is either compressed into a fixed geometry or placed 

in a closed container filled with liquid [1]. There are a few disadvantages to this imaging 

geometry; compressing the tissue into a fixed geometry distorts the natural shape, using a 

liquid filled chamber precludes the use of live laboratory animals, and the matching fluid 

induces additional photon scattering and attenuation [1]. 

 

In non-contact imaging systems, the tissue is illuminated with a laser and fluorescence is 

measured with a CCD camera located around the tissue.  The advantages of this geometry 

are that large datasets from multiple angles can be acquired, and the tissue does not have 

to be compressed or immersed in fluid.  The disadvantage of this method is that the 

surface shape of the tissue must be known, and inaccuracies in this measurement induce 

errors in the forward model [1]. 

 

Figure 5.  Simplified Non-contact FMT Imaging System 

Before FMT can become a clinically useful tool, several challenges must be surmounted.  

First, large datasets and extensive computations are necessary to obtain a reconstruction 
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with sufficient resolution to be clinically meaningful.  Second, these large datasets need 

to be collected quickly to minimize errors from movement of the subject and 

physiological changes [6].   

 

2.2. Model for Photon Diffusion in Scattering Media 

In order to accurately and quickly reconstruct an FMT image, the forward model of 

photon propagation has to accurately predict actual photon density in the tissue while 

being computationally simple.  Typically, the forward model of choice is the diffusion 

approximation to the radiative transfer equation solved for the type of light source used in 

the imaging setup.  The light source used in FMT is laser light either directly incident on 

the tissue or coupled to the tissue with an optical fiber in direct contact.  In the second 

case the light source may be modeled as a point source.  The light intensity can either be 

constant for steady-state measurements, frequency modulated for frequency domain 

measurements, or a short pulse for time-resolved measurements.  The following sections 

review literature related to the modeling of photon diffusion in scattering media. In 

section 2.2.1 we discuss Dirac delta point sources, in section 2.2.2 we discuss boundary 

conditions, and in section 2.2.3 we discuss sinusoidally modulated point sources. 

 

2.2.1. Dirac Delta Point Sources 

Photons propagating through a scattering medium, such as tissue, scatter and attenuate as 

they travel.  The radiative transport equation that describes this process is difficult to 

solve directly, so it is typically approximated by diffusion equations.  However, 

traditional diffusion equations assume isotropic scattering, while photon scattering  is 
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actually anisotropic.  Consequently, it is assumed that after numerous anisotropic 

scattering events the photon distribution will be approximately isotropic.  To incorporate 

this assumption, the scattering coefficient, ��, is modified by the average cosine of the 

angle of a scattering event, �, resulting in the reduced scattering coefficient, ��� =

�1 − �	��.  The photon density in the tissue ��
�, �	 
/���  induced by a source of 

photons ��
�, �	 �/(���) may be found by the diffusion approximation to the radiative 

transfer equation [4] 

 
 
���  ��
�, �	 −  ��∇���
�, �	 +  �����
�, �	 = ��
�, �	 (1) 

where, for the 3-D case, 

 
∇�� =

������ +
������ +

������  (2) 

and for the 2-D case, 

 
∇�� =

������ +
������  (3) 

In (1), v is the speed of light in the tissue and has a typical value of 2.14 × 10�� ��/� , 

which corresponds to an index of refraction of n = 1.4, and D is the diffusion coefficient 

given by [4] 

 � =  
1

3��� +  (1 − �)���  �� (4) 

where ��is the absorption coefficient, ��is the scattering coefficient of the media, and � 

is the average cosine of the angle of a scattering event [4].  Values for these coefficients 

in selected components can be found in Table 1.  
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Table 1.  Optical Properties of Tissue 

Tissue Source 

�
�

 (1 − �)�
�
 �

�
 � � 

mm
-1

 mm
-1

 mm
-1

 - mm 

Bone Pig Skull [7] 0.04 2.625 35 0.925 0.125 

Muscle Chicken [3] 0.017 0.33 0.41 0.20 0.961 

Skin Albino Murine Dermis [3] 0.28 6.2 23.9 0.74 0.051 

Lung Human [3] 0.81 8.1 32.4 0.75 0.037 

Prostate Tumor Rat [3] 0.049 0.81 27.0 0.97 0.388 

Blood Human [3] 0.13 0.611 124.6 0.995 0.450 

 

The diffusion equation (1) is then solved for ��
�, �	 at points far from sources and 

boundaries and for media where �� ≪ �1 − �	��.  For wavelengths in the λ = 650 to 900 

nm range in soft tissue, this second condition is generally true [4].  The solution to (1) 

plotted for the 2-D case is shown in Figure 6. 

 

Figure 6.  Solution to (1) Using COMSOL 

(mm) 

Collimated 

Incident Light 

1.e-1  1.e-2  1.e-3  1.e-4  1.e-5  1.e-6  1.e-7 ��
�, �	 = 
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In an infinite medium, and for an isotropic point source 

solution to (1) becomes [4

 ����, �� � 1�4��
�
where ����, �� has units of 

from a source at ���. As an example, an isotropic source defined to be at the location 

��� � �0, 0, 0� illuminates a sample of 

and 
 � 3 � 10�� 1.4⁄  ��
would the source would b

simplify to 

 ���3,4,0�, �� � 2
This can be plotted as a function of time, resulting in 

Figure 

 

11 

In an infinite medium, and for an isotropic point source �����, �� �  �
4] 

��
���/�
 ��� �� ��4�
� �  ��
�� 

has units of � ���⁄ , and  � � ‖��� � ��‖ � ‖��‖ is the distance of point 

� As an example, an isotropic source defined to be at the location 

illuminates a sample of muscle, with optical properties found in 

��/".  At a location in the muscle, �� � �3, 4
would the source would be � �  ‖��� � ��‖ � #��3�� $ ��4�� � 5, and 

2.40 � 10��	��/�
 � ��� �� 3.04 � 10���� �  3.64 �

This can be plotted as a function of time, resulting in Figure 7. 

Figure 7. Photon Density vs. Time Given by (6) 

��0, 0, 0�, 0�, the 

(5) 

is the distance of point �� 

As an example, an isotropic source defined to be at the location 

muscle, with optical properties found in Table 1, 

, 0�, the distance 

, and (5) would 

� 10	 �� (6) 
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In the case of fluorescence molecular tomography, the light source is anisotropic, so 

modifications must be made to (5).  To model this situation, it is assumed that all source 

photons are initially scattered at a depth �	 =  ��� + (1 − �)���
�.  As shown in Figure 

8, to specify a boundary condition of ��
�, �	 = 0 
 ���⁄  at the tissue surface, a negative 

point source is added at � = −�	 [4].   

 

Figure 8. Model of Incident Collimated Light as Point Sources 

The photon density from an anisotropic source can then be written as [4] 

 ��
�, �	 =
1�4����	�/�

 ����−����	 ���� �−  
�
4���� −  ��� �− 
�

4����  (7) 

 

2.2.2. Photon Diffusion Boundary Conditions 

For the diffusion approximation to the radiative transfer equation, given by (1), absorbing 

boundaries can be modeled with a Dirichlet condition [8] 

Legend: 

 Positive Point Source Zero U Boundary 

 Negative Point Source Tissue 

�	 

�	 

Collimated 

Incident Light 
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 ℎ� = � (8) 

where ℎ = 1,� = 0.  In contact imaging systems, boundaries between the imaging 

chamber and the sources or detectors are tissue-glass-air boundaries, and may be modeled 

with a modified Robin condition.  In non-contact imaging systems, boundaries are tissue-

air interfaces, which also may be modeled with a modified Robin condition [9] [8] 

 !"� ∙ ��∇�	 + ℎ� = �  (9) 

where !"� is the local normal vector at the boundary, � = 0, and [9] [8] 

 
ℎ =

1

2# (10) 

 # =  
$ 2
1 − %	 − 1 + |cos '�|�(

1 − |cos'�|�  
(11) 

 %	 =
(! − 1)�

(! + 1)�
 (12) 

 ! =
!�
����!�
�  (13) 

 '� = sin
� )1!* (14) 

where '� is the critical angle at the boundary, !�
����  is the refractive index of the tissue, 

!�
� is the refractive index of air, ! is the relative refraction coefficient across the 

boundary, %	 is the power reflection coefficient, and # is a coefficient to describe photon 

propagation across boundary derived from Fresnel’s equations, and where for the 3-D 

case, 

 
∇� = +�,�,� + -�,�,� + ."� ,�,�  (15) 
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Alternatively, for the 2-D case,  

 
∇� = +�,�,� + -�,�,�  (16) 

 

2.2.3. Sinusoidal Amplitude Modulated Point Sources 

In subsection 2.2.1, we studied the photon diffusion approximation for Dirac delta point 

sources.  That model is helpful for time-gated measurements, which are typically used for 

reflection measurements to resolve shallow structures.   On the other hand, deep 

structures are typically resolved using transmission measurements.  Transmission 

measurements are typically frequency domain or steady state measurements, acquired 

using a sinusoidally modulated or steady state light source respectively.  Both situations 

can be modeled in highly scattering media by the results of this chapter, (29) and (30).   

 

The photon diffusion from a isotropic sinusoidal amplitude modulated point source in a 

homogeneous isotropic media satisfies the Boltzmann transport equation [10], 

 ���
�, �	�� + �����
�, �	 + ∇ ∙  
��
�, �	  = ��
�, �	 (17) 

 
∇��
�, �	 +  

��� 3 
��
�, �	�� +  

��
�, �	�� = 0 (18) 

where ��
�, �	 is the photon density with units 
 ���⁄ , 
��
�, �	 is the photon current 

density with units � ���⁄ , and D is the diffusion coefficient given above by (4).  The 

relationship between ��
�, �	 and 
��
�, �	 will be given later. ��
�, �	 and 
��
�, �	 can be 

accurately determined for points far from sources or boundaries in media where �� ≪ �� 
[10].  A sinusoidal isotropic point photon source is given by [10] 
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 ��
��, �	 =  ��
��	/#�� + #��  ����−01��2 (19) 

where #�� is the amplitude of frequency-dependant source modulation, #��is the 

amplitude of dc source intensity where #�� ≥  #��, and ω is the angular frequency of the 

source modulation.  It is assumed that ��
�, �	and 
��
�, �	 have the following forms [10]: 

 ��
�, �	 =  ���
�	��� + ���
�	��� ����−0�1� +  3	� (20) 

 
��
�, �	 =  4
�(
�)5
��

+ 4
�(
�)5
��

 ����−0(1� +  6)� (21) 

where 3 and 6 are phase angles.  Substituting (19) into (17), and using the above forms 

for ��
�, �	 and 
��
�, �	 results in the steady-state and frequency-dependent equations for 

��
�	 and 
��
�	 [10], 

 ��� ���
�	��� + ∇ ∙  4
�(
�)5
��

= #��  �(
�) (22) 

 4
�(
�)5
��

=  −��∇���
�	��� (23) 

 (��� − 01)���
�	��� +  ∇ ∙  4
�(
�)5
��

= #���(
�) (24) 

 4
�(
�)5
��

=  −�� 7 1 + 031�/�
1 + (31,/�)�

8  ∇���
�	��� (25) 

By making the assumption that � ≪ �/1, which is equivalent to making the assumption 

that the mean free path between scattering events is much shorter than the wavelength of 

the sinusoidal modulation, (25) reduces to [10] 

 4
�(
�)5
��

≅ −��∇���
�	��� (26) 

where 
�(
�) has units of �/���and ��
�	 has units of 
/���.  By combining (22) and 

(23) to eliminate 4
�(
�)5
��

, results in [10] 
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∇����
�	��� −

��� ��(
�)��� = −
#���� �(
�) (27) 

Likewise, combining (25) and (26) to eliminate 4
�(
�)5
��

, results in [10] 

 
∇����
�	��� − )��� − 01�� *  ��(
�)��� = −

#����  �(
�) (28) 

It is worth noting that (27) and (28) are the steady-state and frequency domain 

equivalents of (1) respectively. (27) and (28) can be solved for an infinite media, 

resulting in [10] 

 ��
�, �	 =  
#��

4���
  ��� �−
9��� � + 
#��

4���

× ��� :−
 ;����� +  1�����

<�/� =>� 71
2

 tan
� ) 1���*8?
× ��� :0
 ;����� +  1�����

<�/�

 �@! 71
2

 tan
� ) 1���*8
−  0(1� +  ')  

(29) 

This equation is the frequency domain equivalent of (5).  For the case where �� ≈ 0, (29) 

simplifies to [10] 

 ��
�, �	 =  
#��

4���
 +  
#��

4���
 × ��� �−
9 1
2���

× ��� �0
 9 1
2��  −  0(1� +  ')� (30) 

As an example, an isotropic steady-state source, with #�� = 10�	, #�� = 5 × 10��, 1 =

10�/��=, ' = 0, and defined to be at the location 
�� = �0, 0, 0	, illuminates a sample of 

muscle, with optical properties found in Table 1 and � = 3 × 10�� 1.4⁄  ��/�.  At a 
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location in the muscle, ��
#��3�� $ ��4�� � 5, and 

 ����, �� � 7.729 �
Plotting |����, ��| as a function of time results i

Figure 9. Magnitude of Photon 

Alternatively, when * �
 ����� �  +
�4�
��  ���
As an example, an isotropic steady

location ��� � �0, 0, 0�, illuminates a sample of muscle, with optical properties found in 

Table 1 and 
 � 3 � 10
distance to the source would be 

simplify to 

 ��3, 4, 0� � 4� ,
 

17 

� � �3, 4, 0�, the distance to the source would be 

, and (30) would simplify to 

� 10� $  3.770 � 10� � ���-.�0.0246 � 10
��
as a function of time results in Figure 9. 

Magnitude of Photon Density vs. Time for Example

0, (29) simplifies to the steady state solution, 

��� /��0��� 1 

As an example, an isotropic steady-state source, with +
� � 10�� and defined to be at th

�, illuminates a sample of muscle, with optical properties found in 

10�� 1.4⁄  ��/".  At a location in the muscle, �
the source would be r �  ‖��� � ��‖ � #��3�� $ ��4�� � 5, and 

10�� 
,3 � 10��1.4 3 �0.961��5�  ��� 4�550.0170.9616 � 3.98

tance to the source would be � �  ‖��� � ��‖ �

�8 (31) 

 

Example (31) 

(32) 

and defined to be at the 

, illuminates a sample of muscle, with optical properties found in 

�� � �3, 4, 0�, the 

, and (32) would 

6 98 � 10� (33) 



www.manaraa.com

18 

 

2.3. Normalized Born Field 

The forward problem for FMT involves not only photon propagation through a media, 

but also photon interaction with fluorochromes.  To model this combined forward 

problem a Born-field approximation can be used.  Noting from (30) that the photon 

density attenuates with the form ����−3
	/
, and can be represented in the frequency 

domain in the following simplified form [5]: 

 �	�
��, 
�,1	 =  
A��
��	 ��� �0.
	

4���
   (34) 

where �	�
��, 
�,1	 has units of 
 ���⁄  and is the photon density at position 
� due to a 

source at 
�� with modulation angular frequency 1, A��
��	 is the source gain factor, 

. =  ����� + 01	/(��)��/� ��
� is the scalar propagation constant, 
 = ‖
�� − 
�‖ is the 

distance from the source, and � =  �3(�� + �1 − �	��)�
�  ��.  Building upon this 

equation, the detected intensity of excitation wavelength light at a detector located at 


��due to a source located at 
��is given by [5] 

 �
���
��, 
��	 = C�� ×  A��
��	  ×  A��
��	 ×  �	D
��, 
�� , .��E (35) 

where C�� is the quantum efficiency of the detector for at wavelength ��, A��
��	 is the 

detector gain factor, .�� is the wave propagation constant for excitation wavelength light, 

and �� is the wavelength of excitation light and has a typical value of 672 nm [1].  The 

intensity of fluorescence wavelength light detected at a detector located at 
�� due to the 

fluorochrome distribution �(
�) illuminated by a source located at 
��, is given by [5] 
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 ����
��, 
��	 =  FA��
��	 × A� × C�� × A��
��	 ×  �	D
��, 
�,.��E
×

�(
�)
1 − 01G(
�) ×  

����
×  �	D
�, 
�� , .��E   ,�
�  (36) 

where �(
�) is the distribution of fluorophore in the media with units ��
�, G(
�)  is the 

fluorescence time constant with units of seconds, .�� is the wave propagation vector for 

the fluorescent wavelength, A� is the attenuation of the filter used to select for detection 

only fluorescent light, and C�� is the quantum efficiency of the detector for fluorescent 

wavelength light. �� is the wavelength of fluorescent light and has a typical value of 710 

nm [1].  Since A��
��	 and A��
��	, the source and detector gain, are position dependent, 

finding a solution to (35) and (36) would require measurement of these values for each 

pair of sources and detectors.   To reduce the experimental measurements required, (35) 

and (36) can be combined to eliminate these terms resulting in the normalized born field 

equation [5], 

 ����
��, 
��	 =  
1A� ×  

����
��, 
��	�
���
��, 
��	 ×  
C��C�� (37) 

By assuming that C�� ≈ C�� due to the similarity of these wavelengths in FMT imaging 

systems, and combining (37) with (35) and (36), yields [5] 

 ����
��, 
��	 =  
1�	�
��, 
�� , .��	

×  F�	D
��, 
�, .��E ×
�(
�)

1 − 01G(
�) ×  
����

×  �	D
�, 
�� , .��E  ,�
� 
(38) 
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This equation is an approximation of the normalized born field.  In the section that 

follows, this equation will be used to  generate the weight matrix in the forward problem. 

 

2.4. Reconstruction Methods 

The inverse problem for FMT requires solving the following equation [2]: 

 ��� = � × � (39) 

where ���is the measurement vector given by (38), � is the weight matrix relating each 

measurement to each voxel of fluorochrome, and � is the fluorochrome concentration 

column vector.  In (39), ��� has units 
/���, � has units 
/���, and � has units 

��
�; while this might seem unbalanced at first glance, the matrix multiplication is 

performing a summation over three spatial dimensions, leading to the correct balance of 

units.  For the steady-state case, where 1 = 0, � is calculated using the right side of 

(38), as shown in the following equation [2]: 

 ��
��, 
�� , 
�	 =
����

×
 �	D
��, 
�, .��E × �	D
�, 
�� , .��E�	�
��, 
�� , .��	  (40) 

where W is typically a 2-D matrix, and for each element Wij, each i is a unique source 

detector pair, and each j is a unique voxel in the volume to be imaged.   
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Figure 10. Calculation of Weight Matrix for Simplified 2

An example of how one element

system is shown in Figure 

the location of the annotated 

The system of equations 

concentration vector, when 

(40).  There are multiple methods for 

used an iterative method called the method of projections

reconstruction technique with randomized projection order (R

21 

. Calculation of Weight Matrix for Simplified 2-D FMT System

one element of this matrix would be calculated for a simple

Figure 10; it is important to note that the tip of each vector represents 

the location of the annotated ��. 

 

 shown in (39) can be solved for 9̂, the estimated 

when ���is determined experimentally and ; is calculated using 

e are multiple methods for solving this system of equations

used an iterative method called the method of projections, also known as the algebraic 

reconstruction technique with randomized projection order (R-ART).  In the method of 

 

D FMT System 

would be calculated for a simple 2-D 

the tip of each vector represents 

, the estimated fluorochrome 

is calculated using 

solving this system of equations.  Graves (2003) 

, also known as the algebraic 

In the method of 
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projections, each row vector of W and its corresponding value of ��� defines an affine 

hyperplane.  The guess for the value of �̂�
� is updated each iteration by projecting the 

previous guess, �̂�

��, onto an affine hyperplane using the following formula [11]: 

 �̂�
� = �̂�

�� −
�̂�

�� ⋅  H
 − �
��H
  ⋅  H


× H
 (41) 

where �̂�
� is the fluorochrome vector after the projection, �̂�

�� is the fluorochrome 

vector before the projection, H
 is the i
th

 row of the matrix W, and �
�� is the i
th

 element 

in the ��� measurement vector. Figure 11 shows an example of the method of 

projections for solving a system of two equations and two unknowns.  An initial guess is 

projected onto a hyperplane, and the resulting point is projected onto the other 

hyperplane; this is repeated until convergence to within a specified tolerance is achieved.  

 

Figure 11. Method of Projections for Two Equations and Two Unknowns 

H���� + H���� =  ���� 

H���� + H���� =  ���� 

Initial Guess 

Projections 

�� 

�� 

Solution 
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Alternatively the Moore-Penrose pseudoinverse of the matrix W can be found using 

singular value decomposition to obtain a direct solution for � [2].  This method requires 

finding the singular value decomposition of the matrix W [2], 

 � = ��I� (42) 

where � and I are orthogonal basis matrices and � is a diagonal matrix that contains the 

singular values.  Using the above singular value decomposition, a solution for (39) can be 

obtained: 

 �̂ = ����� = I�
��� ��� (43) 

where �� is the Moore-Penrose pseudoinverse of �. To enhance the accuracy of the 

reconstruction from noisy measurements, singular values below a certain threshold are 

typically discarded [2]. 

 

For a reconstruction of an N x N x N voxel volume, the minimum size of the matrix W is 

N
3
 by N

3
.  As an example, for N = 32, the minimum size of the matrix W would be 

32,768 by 32,768, for N = 64 this increases to 262,144 by 262,144.  To obtain better 

reconstructions with noisy measurements more imaging data than this minimum value is 

typically collected, making the system overdetermined.  Solving systems of equations 

with such a large number of equations and unknowns requires a considerable number of 

computations and large amounts of memory.   
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3. Challenges in FMT Reconstruction 

Past reconstructions of FMT images have been limited by memory and computational 

constraints to a relevantly small number of source-detector pairs, and consequently are 

restricted to relatively low spatial sampling. To overcome these limitations, the 

formulation of the forward problem was decomposed into a diagonal matrix multiplied by 

a Khatri-Rao product.  For overdetermined cases, this decomposition significantly 

reduces the computational and memory complexity of reconstruction; this allows for 

larger imaging datasets with more source-detector pairs and higher spatial sampling.  

Higher spatial sampling has been shown to allow higher reconstruction resolution, 

improve the signal to noise ratio of measurements, and improve reconstruction image 

quality [12].  Additionally, for overdetermined datasets - those with more source-detector 

pairs than reconstruction voxels - this method significantly reduces the computational 

complexity of reconstruction compared to method of projections reconstructions and the 

memory complexity of reconstruction when compared to SVD based Moore-Penrose 

pseudoinverse reconstructions. The performance of this algorithm will be compared 

against these reconstruction methods. 

 

The reconstruction of FMT images is an ill-posed problem, with a poorly conditioned 

weight matrix.  Consequently, small errors in the forward model can create significantly 

larger errors in the reconstructed image.  Improving the prediction accuracy of photon 
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propagation in the forward model would therefore allow for significant increases in the 

accuracy and image quality of FMT reconstructions.   
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4. FMT Reconstruction Via Khatri-Rao Decomposition 

Large measurement datasets are necessary to obtain reconstruction with sufficient 

resolution to be clinically meaningful.  However, the computational complexity of 

reconstructing large datasets can be prohibitive.  To reduce the computational complexity 

of reconstruction, the forward problem weight matrix, (40), was decomposed into a 

product of smaller matrices.  This reformulation of the forward problem significantly 

reduces the computational complexity of reconstructing overdetermined datasets. 

 

4.1. Theory 

4.1.1. Weight Matrix in Tensor and Array Forms 

The weight matrix relates the experimental measurements of each source and detector 

pair in the imaging system to the concentration of fluorochrome in each voxel.  The 

weight matrix is generated by a forward model.  The forward model used here is the 

normalized Born equation, given by (40); however the following method can be used for 

any forward model in imaging systems where every source contributes to the detected 

signal at every detector.  Each element of the weight matrix specifies a unique source-

voxel-detector combination, and is calculated as shown in Figure 10 and (40). 

 

Although the matrix W is shown as a three dimensional tensor in (40), for reconstruction 

purposes the matrix is typically flattened to a two dimensional array of size m by n where 
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m is the number of source-detector pairs and n is the number of voxels being 

reconstructed, 

 ��
��, 
�� , 
�	 �������JKKKKL  ��
��� , 
�	 (44) 

Flattening the matrix � can be represented graphically: 

 

Figure 12. Flattening the Weight Matrix from a Tensor to an Array 

 

4.1.2. Decomposition of Weight Matrix to Extract Normalizing Term 

When the matrix W is flattened, the normalizing term �	D
��, 
�� , .��E becomes a constant 

for each row, ��
��� , : 	.  Consequently, the matrix W can be expressed as a constant 

times the matrix product of a diagonal matrix ��� to the left of ���, the non-normalized 
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matrix W, 

 � =
����

 ��� ���  (45) 

where the diagonal entries of ��� are 

 ����
���	 =
1�	�
��, 
�� , .��	 (46) 

The non-diagonal entries are equal to zero.  This decomposition can be represented 

graphically as: 

 

Figure 13. Decomposition of Weight Matrix to Remove Normalizing Term 

In general, if this method is used for a different forward model which does not have a 

normalization term, ��� would be equal to the identity matrix, M, and this step can be 

omitted entirely. 
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4.1.3. Decomposition of Weight Matrix to Khatri-Rao Product 

���, the non-normalized matrix W, can be decomposed to be expressed as a Kronecker-

like product of two smaller matrices.  Before discussing this decomposition in detail, 

some basic information on the Kronecker product and Khatri-Rao product is provided 

below. 

 

Given two matrices A and B, each of size 2 by 2, the Kronecker product of A and B is 

equal to 

 # ⊗ O = 7P��O P��OP��O P��O8 = QP��R�� P��R��P��R�� P��R�� P��R�� P��R��P��R�� P��R��P��R�� P��R��P��R�� P��R�� P��R�� P��R��P��R�� P��R��S (47) 

where ⊗ is the Kronecker operator. More generally, if A and B are of size ma by na and 

mb by nb respectively, the Kronecker product of A and B results in a matrix of size ma mb 

by na nb formed by multiplying each element in A by every element in B [13].   

 

The Khatri-Rao (KR) product, also called the column wise Kronecker product, is a matrix 

operation that is related to the Kronecker product.  Given two matrices C and D of size 

mc by n and md by n, the KR product is defined as [13] 

 T ⊙ � =  �=:� ⊗  ,:� =:� ⊗  ,:� ⋯ =:� ⊗  ,:�� (48) 

where ⊙ is the KR operator.  The resulting matrix is of size mc md by n and is a subset of 

the columns of T ⊗ � [13].  For matrices C and D each of size 2 by 2, their KR product 

is equal to 
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 T ⊙ � = Q=��,�� =��,��=��,�� =��,��=��,�� =��,��=��,�� =��,��S (49) 

Note that the matrices C and D must have the same number of columns.   

 

���, can be decomposed to be expressed as a KR product of the matrices �� and ��,  

 ��� = ��  ⊙  �� (50) 

where 

 ���
��, 
�	 = �	D
��, 
�, .��E (51) 

 ���
�� , 
�	 =  �	D
�, 
�� , .��E (52) 

(50) can be represented graphically as shown in Figure 14, for a reconstruction of an n 

voxel image from an imaging system with ms sources and md detectors. 

 

Figure 14. KR Product Decomposition of Wsd 

 .  .  . 

 

N�  

Full matrix 

Size: msmd by n 

(arrows represent 

columns ����: , 
�	) 

 .  .  . 

 

N� N  

 .  .  . 

 

Full matrix 

Size: ms by n 

(arrows represent 

columns ���: , 
�	) 
Full matrix 

Size: md by n 

(arrows represent 

columns ���: , 
�	) 



www.manaraa.com

31 

 

By combining (45) and (50), W can be rewritten as 

 � =
����

 ��� ���  ⊙  ��� (53) 

 

4.1.4. Pseudoinverse of Khatri-Rao Product 

From (53), the Moore-Penrose pseudoinverse of � can be written as 

  �� =
���� ���  ⊙  ���� ���


�  (54) 

where ��� is given by (46), �� is given by (51), �� is given by (52).  The inverse of 

���, since it is a diagonal matrix, is the element-wise inverse of each non-zero element 

in the matrix.  A simple example of the inverse of a diagonal matrix such as ��� is  

 ��� =  U4 0 0
0 2 0
0 0 0.5

V  

�#����WKKKL   ���


� =  U0.25 0 0
0 0.5 0
0 0 2

V (55) 

The following identity is then applied to the pseudoinverse of a KR product shown in 

(54); given matrices A and B [13], 

 �# ⊙  O	��# ⊙  O	 = (#�#) ⊛ (O�O) (56) 

where ⊛ is the Hadamard operator, also known as the element-wise multiplication 

operator, defined as 

 X ⊛ Y = $��� ������ ���( ⊛ 7Z�� Z��Z�� Z��8 = 7���Z�� ���Z�����Z�� ���Z��8 (57) 

(56) can be rewritten as [13] 

 �# ⊙  O	� = /(#�#) ⊛ (O�O)2� �# ⊙  O	� (58) 

(58) can be substituted into (54) for # =  ��, and O =  ��, resulting in 
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 �� =  
����  $[(��

� ��) ⊛ (��
� ��)\� ���  ⊙  ��	�(  ���


� (59) 

This is a new result to the best of my knowledge.  As will be discussed shortly, this result 

can significantly reduce the reconstruction computational complexity and memory 

requirements for reconstruction when the matrix W is overdetermined. 

 

4.2. Reconstruction Algorithms 

By combining (42) and (59), the following equation for the reconstructed fluorochrome 

concentration, �̂, is obtained: 

 �̂ = �� ��� =
���� [(��

� ��) ⊛ (��
� ��)\� ���  ⊙  ��	� ���


� ��� (60) 

Recall that ��� is given by (46), �� is given by (51), �� is given by (52), and ⊛ is the 

Hadamard operator given by (59).  To simplify the notation in the following discussion, 

(59) will be rewritten as 

 �̂ = #�R (61) 

where 

 # = [(��
� ��) ⊛ (��

� ��)\ (62) 

 R =
���� ���  ⊙  ��	� ���


� ��� (63) 

For an imaging system with �� sources and �� detectors, for a total of � = �� × �� 

source-detector pairs, and with ! voxels in the forward model, both the matrix �� and 

���  ⊙  ��	� are of size ! by �.  For overdetermined systems with � ≫ ! these 

matrices can become prohibitively large, requiring significant amounts of memory to 

store.  Consequently, a reconstruction method that does not require these matrices to be 
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stored in memory could significantly reduce the memory complexity of the problem.  

Two different reconstruction algorithms that satisfy this criteria were investigated.  Both 

methods involve reconstruction by taking the singular value decomposition of a matrix 

generated from a KR product, this method will be called SVD-KR reconstruction for 

short. 

 

4.2.1. Method 1: Row-Wise SVD-KR Reconstruction 

In this reconstruction method, one row at a time of the matrix ���  ⊙  ��	� is calculated 

and multiplied by the pre-computed vector 
$��

#
���


� ���, and stored as the i
th

 element 

of the column vector R.  The result after iterating through all n rows of the matrix is an n 

by 1 column vector, R.  #� is then calculated and multiplied by R, yielding the 

reconstructed fluorochrome concentration, �̂.  A flowchart of this algorithm is shown in 

Figure 15, with acquired data shown in dark gray, calculated data in textured light gray, 

and methods in white. 
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Figure 15.  Row-Wise SVD-KR Reconstruction Algorithm 
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are summed resulting in the n by 1 column vector, R.  #� is then calculated and 

multiplied by R, yielding the reconstructed fluorochrome concentration, �̂.  A flowchart 

of this algorithm is shown in Figure 16, with acquired data shown in dark gray, calculated 

data in textured light gray, and methods in white. 

 

Figure 16.  Column-Wise SVD-KR Reconstruction Algorithm 
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4.2.3. Minimizing Reconstruction Errors from Noisy Measurements 

The reconstruction of FMT images is an ill-posed problem with a poorly conditioned 

weight matrix.  Consequently,  small errors in measurements or models can cause 

significant errors in the reconstruction.   The least squares solution to the linear equation 

#� = R is given by (60);  the reconstruction error from this least squares solution is given 

by [14] 

 ]��]]� + ��] ≤ ‖#‖‖#
�‖ ×
‖�#‖‖#‖  (64) 

 ]��]]� + ��] ≤ ‖#‖‖#
�‖ ×
‖�R‖‖R‖  (65) 

Combining (64) and (65) results in 

 ]��]]� + ��] ≤ ‖#‖‖#
�‖ × �]�R]]R] +
‖�#‖‖#‖ � (66) 

where �� is the reconstruction error given by �̂ = � + ��, �R"� is the measurement error, 

�# is the forward model error, and ‖#‖‖#
�‖ is the condition number of #.  To better 

understand this equation and its implications, we need to first state the relationship 

between the singular value decomposition of # and the condition number of #.  As 

shown in (42), A can be expressed as 

 # = �%�%I%� (67) 

where �% and I% are orthonormal matrices and S is a diagonal matrix of singular values 

arranged in a descending order.  The norm of #, ‖#‖, can then be written as 

 ‖#‖ =  ‖�%‖‖�%‖]I%�] (68) 

Since the norm of an orthonormal matrix is 1 and the norm of a diagonal matrix is equal 
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to the largest entry on the diagonal, ‖#‖ is therefore equal to the largest singular value in 

�%, ^&�'.  Likewise, ‖#
�‖ is equal to the inverse of the smallest singular value, ^&
�
� .  

Therefore the condition number of # is equal to 

 ‖#‖‖#
�‖ =
^&�'^&
�  (69) 

Inspecting (66), we can see that by reducing the condition number of #,  the relative error 

in the reconstruction, ]��] ]� + ��]_ , can be reduced as well.  This can be accomplished 

by replacing # with a reduced rank approximation;  assuming that # has n singular 

values, for 
 < ! a rank-r approximation to #, #̀�, is equal to 

 #̀� = �:���I:�
� (70) 

where �:� is the first r columns of �%, I:� is the first r columns of I%, and �� is diagonal 

matrix with the first r singular values of �%.  By using only the r largest singular values 

^&
� is increased, which decreases the condition number of #̀�, leading to reduced 

reconstruction error.  However, this approximation also introduces error by decreasing 

the accuracy of the forward model;  the approximation error increases ‖�#‖ ‖#‖⁄  in (66), 

leading to increased reconstruction error.  Inspecting (66), we can see that for values of r 

that are not significantly less than n, ]�R] ]R]_ ≫ ‖�#‖ ‖#‖⁄  and so the effect of 

increasing ‖�#‖ ‖#‖⁄  will be less than the associated decrease of ‖#‖‖#
�‖.  However, 

if r is decreased further, ‖�#‖ ‖#‖⁄  can become a significant term when ]�R] ]R]_ ≅

‖�#‖ ‖#‖⁄ , introducing a significant source of reconstruction error.  Consequently, in 

selecting a value for r a balance must be struck, since lowering the value of r reduces the 

noise in the reconstruction but if lowered too far can introduce significant errors.  
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Previous research has addressed the issue of selecting r by analyzing the singular value 

decomposition of the weight matrix [15] [2].  As shown in (42), the singular value 

decomposition of the weight matrix is � = ��I�, which combined with (39) can be 

rewritten as [2] 

 ����� = �I�� (71) 

��� can be decomposed into two components, � �
(���
��  and � �)
��

�� , by analyzing multiple 

measurement sets [2].  The vectors ��� �
(���
��  and ��� �)
��

��  are calculated, filtered, and 

plotted;  the value of r is selected as the index at which ��� �
(���
��  crosses and becomes 

smaller than ��� �)
��
��  [2].  At this index, addition of additional singular values to the 

approximation will contribute more noise to the reconstruction than signal, increasing the 

reconstruction error. 

 

This method of selecting r can be extended for use in the reconstruction methods 

presented here. (67) and (60) can be combined and rewritten to obtain 

 �%�R = �%I%�� (72) 

This equation can be combined with (63) to yield 

 ���� 4�%� ���  ⊙  ��	� ���

� 5 ��� = �%I%�� (73) 

Like before, ��� can be decomposed into two components, � �
(���
��  and � �)
��

�� , resulting 

in two equations, 

 ���� 4�%� ���  ⊙  ��	� ���

� 5 � �
(���

�� = �%I%�� �
(��� (74) 
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The two resulting vectors from theses equations are filtered with a median filter and then 

plotted against each other.  The highest index for which

gives the value of r to use for the rank

example for a reconstruction of 512 voxels using synthetic measurements from 256 

sources and 1024 detectors with a 40 dB SNR.

the value of r was determined to be 262.  To confirm this result, 

were performed for 1 >
fluorochrome concentration.  This analysis confirmed that 

root mean squared error (

in Figure 18.  It is worth noting that the value of 

measurement noise and the number 

These plots were created using a synthetically generated FMT imaging data.

Figure 17. Plot of Signal and Noise Contributions 
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The two resulting vectors from theses equations are filtered with a median filter and then 

plotted against each other.  The highest index for which ��@�
�9 ������

se for the rank-r approximation of the matrix +.

a reconstruction of 512 voxels using synthetic measurements from 256 

sources and 1024 detectors with a 40 dB SNR.  From the data used to generate

was determined to be 262.  To confirm this result, SVD-KR 

> � > 512, and the RMS error measured against the known 

fluorochrome concentration.  This analysis confirmed that � � 262 has the minimum 

root mean squared error (RMSE), with a value of 0.6370.  A plot of the results 

.  It is worth noting that the value of r depends on many variables, such as 

measurement noise and the number and placement of voxels, sources and detectors.

These plots were created using a synthetically generated FMT imaging data.

. Plot of Signal and Noise Contributions vs. Singular Value Index

(75) 

The two resulting vectors from theses equations are filtered with a median filter and then 

������ A ��@�
�9 ����� 

.  Figure 17 is an 

a reconstruction of 512 voxels using synthetic measurements from 256 

From the data used to generate Figure 17, 

KR reconstructions 

, and the RMS error measured against the known 

has the minimum 

.  A plot of the results is shown 

on many variables, such as 

and placement of voxels, sources and detectors.  

These plots were created using a synthetically generated FMT imaging data. 

 

Singular Value Index 
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Figure 18. Reconstruction Error vs. Rank 

 

4.3. Results for the New FMT Reconstruction 

To solve (60) for �̂, the Moore-Penrose pseudoinverse of the matrix # must be calculated.  

The matrix # is of size n by n for any matrix W of size m by n, where n is the number of 

voxels in the forward model and m is the number of source-detector pairs.  Since matrix 

A is of size n by n, the computational and memory complexity of calculating its 

pseudoinverse is dependent solely on the number of voxels in the forward problem and 

not on the number of source detector pairs; since this step is the limiting step in terms of 

memory usage, the reconstruction algorithm is able to solve for systems with a large 

number of sources and detectors.   

 

Previous imaging systems have typically used an underdetermined system of equations 

for W because of the computational limitations of existing reconstruction techniques.  
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Compared to these existing techniques, the SVD-KR reconstruction method significantly 

reduces the computational complexity and memory requirements of reconstruction when 

the matrix W is overdetermined.   

 

To test the performance of this method, synthetic volume image data was generated using 

a diffuse non-ellipsoidal phantom designed to emulate structures that may be encountered 

in vivo.  A slice of this phantom is shown in Figure 19. 

 

Figure 19. Diffuse Non-ellipsoidal Phantom Used in Reconstruction 

It was then reconstructed using three different reconstruction techniques: row-wise SVD-

KR, column-wise SVD-KR, and singular value decomposition.  For simplicity, these tests 

used an equal number of sources and detectors for each dataset.  Results of this test are 

shown in Figure 20, Figure 21, Figure 22, Table 2, Table 3, Table 4, and Table 5. 

 

 

 



www.manaraa.com

42 

 

Table 2. SVD-KR and SVD Reconstruction Time 

Voxels 

Source-

Detector 

Pairs 

Row-Wise SVD-KR 

Reconstruction 

Time (sec) 

Column-Wise SVD-

KR Reconstruction 

Time 

SVD 

Reconstruction 

Time 

1,000 10,000 4.7 4.7 11.4 

1,000 50,625 6.4 7.2 31.4 

1,000 160,000 14.2 13.8 86.1 

1,000 390,625 29.7 28.3 709.6 

1,000 810,000 62.2 52.9 Out of memory 

1,000 2,560,000 211.0 165.2 Out of memory 

1,000 6,250,000 454.4 378.3 Out of memory 

1,000 12,960,000 1,022.6 803.2 Out of memory 

 

 

Figure 20. SVD-KR and SVD Reconstruction Time 
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Table 3. SVD-KR and SVD Calculated Reconstruction Memory Usage 

Voxels 

Source-

Detector 

Pairs 

Row-Wise SVD-KR 

Reconstruction 

Memory Usage 

(MB) 

Column-Wise SVD-

KR Reconstruction 

Memory Usage 

(MB) 

SVD 

Reconstruction 

Memory Usage 

(MB) 

1,000 10,000 37 37 305 

1,000 50,625 44 44 1,545 

1,000 160,000 55 55 4,883 

1,000 390,625 69 69 11,921 

1,000 810,000 85 85 24,719 

1,000 2,560,000 128 128 78,125 

1,000 6,250,000 183 183 190,735 

1,000 12,960,000 250 250 395,508 

 

 

Figure 21. SVD-KR and SVD Calculated Reconstruction Memory Usage 
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Table 4. SVD-KR and SVD Reconstruction Errors 

Voxels 

Source-

Detector 

Pairs 

Row-Wise SVD-KR 

Reconstruction 

RMSE 

Column-Wise SVD-

KR Reconstruction 

RMSE 

SVD 

Reconstruction 

RMSE 

1,000 10,000 0.472 0.472 0.423 

1,000 50,625 0.402 0.402 0.339 

1,000 160,000 0.332 0.332 0.293 

1,000 390,625 0.301 0.301 0.283 

1,000 810,000 0.272 0.272 Out of memory 

1,000 2,560,000 0.243 0.243 Out of memory 

1,000 6,250,000 0.234 0.234 Out of memory 

1,000 12,960,000 0.220 0.220 Out of memory 

 

 

Figure 22. Reconstruction Time vs. RMSE 

From these results, we can see that the SVD-KR reconstructions were significantly faster 

than SVD reconstruction, with speed increases of up to 25X.  The column-wise SVD-KR 

reconstruction method performed slightly faster than the row-wise SVD-KR.  SVD-KR 

was able to reconstruct four large datasets that could not be reconstructed by the SVD 
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of memory for reconstruction with SVD.  Error was slightly higher for the SVD-KR 

reconstructions compared to the SVD reconstructions when solving for the same 

measurement dataset.  However, Figure 22 shows that SVD-KR can reconstruct to the 

same accuracy as SVD in less time.  Alternatively, SVD-KR can reconstruct more 

accurately than SVD in the same time. 

 

Since the previous datasets used an equal number of sources and detectors, new datasets 

were generated to determine the effect of the source to detector ratio on reconstruction.  

The results are shown in Table 5. 

Table 5. SVD-KR Reconstruction Time and Error  

Voxels 

Source-

Detector Pairs Sources Detectors 

Row-Wise SVD-

KR Reconstruction 

Column-Wise SVD-

KR Reconstruction 

Time Error Time Error 

1000 640000 6400 100 45.4 0.541 37.1 0.541 

1000 640000 1600 400 47.7 0.441 41.8 0.441 

1000 640000 400 1600 48.0 0.493 44.0 0.493 

1000 640000 100 6400 53.0 0.523 38.2 0.523 

 

These results show that reconstruction error is minimized when the ratio between sources 

and detectors is near one.  Many current FMT setups use more detectors than sources; in 

order to make best use of SVD-KR reconstruction, the number of sources in new systems 

needs to be increased. Additionally, since measurement sets from large detector arrays 

can be reconstructed using this method, many additional CCD cameras could be arrayed 

around the sample to collect additional measurements.  The improved detector spatial 

diversity and spatial sampling in such a system would reduce error in the reconstruction.   
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As an example of the image reconstructions obtained using SVD

voxel image was reconstructed using imaging data from 9216 sources and 

with a signal to noise ratio of 40 dB.  The results are shown in 

 

Figure 23. Reconstruction Using SVD

46 

As an example of the image reconstructions obtained using SVD-KR, a 24

voxel image was reconstructed using imaging data from 9216 sources and 

with a signal to noise ratio of 40 dB.  The results are shown in Figure 23.

. Reconstruction Using SVD-KR.  Montage on left, 3-D rendering on right.

Tumor 

KR, a 24 x 24 x 24 

voxel image was reconstructed using imaging data from 9216 sources and 9216 detectors 

. 

 

D rendering on right. 
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5. Modeling of Photon Diffusion 

The reconstruction of FMT images is an ill-posed problem, with a poorly conditioned 

weight matrix; consequently, small errors in the forward model can create significantly 

larger errors in the reconstructed image.  Improving the prediction accuracy of the photon 

propagation forward model would therefore allow for significant increases in the 

accuracy and image quality of FMT reconstructions.  In this chapter, we will study 

photon diffusion in media with homogeneous and heterogeneous optical properties.   

 

A finite element model is developed in COMSOL, and is validated using existing models.  

COMSOL is a finite element based multi-physics simulation program.  Finite element 

models discretize the volume into a set of nodes and elements.  This allows a continuous 

function to be approximated.  Additionally, the finite element mesh is able to adapt the 

size of elements where necessary in order to better approximate the function near 

boundaries and small features such as point sources. This finite element model is then 

used to study the effects of heterogeneous optical properties on the accuracy of the 

normalized Born field in models that assume homogeneous optical properties. 

 

5.1. Photon Propagation Model for Homogeneous Media 

Photon diffusion in homogeneous media was modeled using two different approaches: 

finite element modeling in COMSOL, and method of sources using Green's function.   
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5.1.1. Finite Element Model 

The diffusion approximation to the radiative transfer equation, given by (1), was modeled 

for a 3-D imaging system using COMSOL 3.4a.  The photon density inside of the 

imaging chamber, ��
�, �	, was solved for using stationary analysis of the partial 

differential equation given by (1).  A schematic of the imaging chamber setup is shown in 

Figure 24.  

 

Figure 24. Imaging Chamber Schematic for COMSOL Simulation 

The imaging chamber was modeled as a 50 × 50 ×  50 ��� cube.  Two different 

boundary conditions were applied to the chamber; Absorbing boundaries were modeled 

with the Dirichlet condition from (8), while tissue-glass-air interfaces located at the 

source plane and detector plane were modeled with the modified Robin condition from 

(9) though (15).  The glass was assumed to be treated with an anti-reflective coating, 

giving a value of a = 0.5 for the modified Robin conditions.  The incident collimated 

50 mm 

50 mm 

50 mm 

Tissue-Glass-Air  

Boundary (Shaded) 

Absorbing Boundary 

Point Source at Depth 1/µt 
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laser light was modeled as an isotropic point source at depth �	 =  ��� + (1 − �)���
� 

[4].  Optical properties inside the imaging chamber were assumed homogeneous with 

! = 1.4, �� = 0.03 mm⁄  and ��� = 1.0 mm⁄ .   

 

5.1.2. Method of Sources with Green's Function 

To validate the precision of the above COMSOL finite element model, a model was 

constructed based on the method of sources [16] and Green's function [5] given by (34).  

Like the COMSOL model above, the incident collimated light is modeled as an isotropic 

point source at a depth of �	 [4].  Zero photon density boundary conditions were assumed 

at absorbing boundaries and at an extrapolated boundary offset �* from glass-tissue-air 

interfaces [16], 

 �* = 2� 1 + %���
1 − %��� (76) 

where � is the diffusion coefficient, and %��� is the Fresnel reflection at the boundary.  

For anti-reflection coating glass, it was assumed that  %��� = 0.  These boundary 

conditions were met by adding additional positive and negative isotropic point sources 

[16].  Figure 25 shows how these boundary conditions were enforced the at the source.  
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Figure 25. Source Boundary Conditions 

In general, to enforce a boundary condition a copy of the point source(s) with opposite 

sign needs to be mirrored across the boundary.   Multiple boundary conditions can be 

enforced by mirroring the point sources across each boundary.   Figure 26 shows how this 

would be accomplished for the 4 boundary conditions from the 4 sides of a square 

imaging system. 

�	 

�	 

�	 + �* 

�	 

�* 

Glass Boundary: Absorbing Boundary: 

Collimated 

Incident Light 

Legend: 

 Positive Point Source Zero U Boundary 

 Negative Point Source Tissue 
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Figure 26. 2-D Method of Sources to Enforce Boundary Conditions 

Although hard to visualize, the method of sources presented in Figure 26 can be extended 

to 3-D to enforce the 6 boundary conditions from the 6 sides of the cubic imaging 

chamber.  For the 3-D case, Figure 26 can be thought of as a perpendicular slice though 

the imaging chamber that contains the source.  While 4 of the 6 sides of the imaging 

Legend: 

 Positive Point Source Zero U Boundary 

 Negative Point Source Tissue 
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chamber intersect the page, 2 sides of the imaging chamber would lie parallel to the page, 

above and below; to enforce these 2 boundary conditions, all of the sources in Figure 26 

would need to be mirrored over each of these boundaries - into and out of the page 

respectively. 

 

5.1.3. Model Comparison 

A 3-D method of sources model with 36 sources was constructed in MATLAB.  The 

photon density in the imaging chamber induced by each source is given by (34).  To 

compensate for differences in A� between the two models, a MATLAB symbolic 

equation was built with the form: 

 Z = b ± P 
 ��� �0.�	

4����
��� �)�����

   (77) 

where . =  ����� + 01	/���/�, � =  �3�1 − �	���
�, � is the distance from the source, 

and P is a symbolic variable to allow for the determination of an optimum value of A� to 

compensate for differences in source intensity between the two models.  The resulting 

equation was fit to the COMSOL data using MATLAB surface fitting tool, this is shown 

in Figure 27.  Referring to Figure 25(a), for a 1-D system with 2 sources (77) becomes 

 Z =
P

4��� � ��� D0.�� − �		E�� − �		 −
 ��� D0.�� + �		E�� + �		 � (78) 

Recall that � is the speed of light in the media, � is given by (4), �	 =  ��� + (1 −

�)���
�, and . =  ����� + 01	/���/�. 
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Figure 27. Surface Fit of Finite Element Model by Method of Sources Model 

 

Figure 28. Residuals of Surface Fit 
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A value of P = 1.003 was found to minimize error between the two models, resulting in 

a RMSE of 0.004991.  Further than 1 mm from the source, the models had a maximum 

error of 8%.  Much of this error was likely the result of interpolating values from a finite 

element mesh used in COMSOL into a regular grid. 

 

5.2. Finite Element Model for Heterogeneous Media 

Many previous FMT imaging systems have used forward models which do not explicitly 

take into account the heterogeneous optical properties of the various tissues being imaged 

[1] [2] [5] [17].  Instead, it is assumed that the optical properties in the tissue are 

homogenous and equal to the average optical properties of the tissues; errors introduced 

by heterogeneous optical properties are partially canceled out by dividing fluorescent 

measurements by intrinsic measurements to obtain the normalized Born field.  This 

provides an accurate approximation when small, simple heterogeneities are present, such 

as those found in deliberately constructed phantoms.  However, to resolve deep structures 

with high resolution in vivo despite the complex anatomical structures and the diverse 

optical properties of tissue, a forward model that more accurately takes into account 

heterogeneous optical properties is necessary. 

 

One promising forward model involves using a hybrid CT-FMT system;  In such a 

system, anatomical data would be collected by the CT system concurrently with 

fluorescent data by the FMT system.  The CT dataset could be used to determine the 

shape of anatomical structures, classify their composition, and then lookup their known 

optical properties. The shape and composition of the anatomical structures extracted from 
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the CT data could then be used to accurately model photon propagation using finite 

element methods. The photon density data generated by this method could then be used 

in a reconstruction method such as the SVD-KR reconstruction method presented in the 

previous chapter. 

 

5.2.1.  CT Image Segmentation 

From the images produced by the CT scanner, anatomical structures can be extracted by 

one of many image segmentation techniques [18].  For the purposes of this paper, k-

means clustering based image segmentation was used, however other image segmentation 

techniques would be suitable as well.  Image segmentation was performed on the 

Digimouse CT dataset [19] [20]. 

 

The right hind leg of the mouse was cropped from the dataset and segmented using k-

means clustering based on the voxel intensity.  Based on the major structures present in 

the leg, the voxel intensities were grouped into 5 clusters: bone, skin/fat, fast twitch 

muscle, slow twitch muscle, and the surrounding air.  Initial values were set manually 

using typical values for these structures.  The voxel intensity values for the 5 clusters 

were obtained using a k-means clustering algorithm; these values were used to segment 

the dataset into the tissue types represented by the clusters based on the intensity of each 

voxel.  Each tissue was then converted into a 3-D mesh.  The resulting 3-D structures are 

shown in Figure 30. 
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Figure 29. Segmented Digimouse Skeleton Showing Region of Interest (ROI) 

Bone Only With Muscle Added With Skin and Fat Added 

Figure 30. Segmented Mouse Leg 

 

5.2.2.  Finite Element Modeling of Photon Propagation 

To analyze photon propagation through heterogeneous media, the 3-D meshes shown in 

Figure 30 were imported into COMSOL.  The photon density inside of the imaging 

ROI 
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chamber, ��
�, �	, was solved using stationary analysis of the following partial differential 

equation: 

 
 
���  ��
�, �	 − ∇  ⋅ ����
�	 ∇��
�, �	� +  ����
�	 ��
�, �	 = ��
�, �	 (79) 

This is a more general form of (1) which is valid for heterogeneous optical properties.  A 

schematic of the imaging chamber setup is shown in Figure 31. 

 

Figure 31. Imaging Chamber Schematic for Heterogeneous COMSOL Simulation 

A small amount of fluorochrome, modeled as a point source, was placed between the fat 

and muscle on the lateral face of the right lower leg.  The optical properties for each of 

the tissues were assigned the following values: 

10 mm 

7.6 mm 

12 mm 

Tissue-Glass-Air  

Boundary (Shaded) 

Absorbing Boundaries 

Point Source at Depth 1/µt 

101 by 101 Detector Array 

Mouse Leg Surrounded  

by Matching Fluid 



www.manaraa.com

58 

 

Table 6.  Optical Properties of Selected Tissue 

Tissue Source 

�
�

 (1 − �)�
�
 �

�
 � � 

mm
-1

 mm
-1

 mm
-1

 - mm 

Bone Pig Skull [7] 0.04 2.625 35 0.925 0.125 

Muscle Chicken [3] 0.017 0.33 0.41 0.20 0.961 

Skin 
Murine Dermis 

(Albino) [3] 
0.28 6.2 23.9 0.74 0.051 

Matching Fluid 
Intralipid and Ink 

Solution [2] 
0.03 1.0 0.1 0.90 0.324 

 

By building a similar model with the correct physical layout of the sources, detectors and 

imaging chamber, this model can be used to calculate the ���, ��, and �� matrices from 

(53) for many FMT imaging systems.  This method offers the advantage of explicitly 

taking into account heterogeneous optical properties, leading to increased model accuracy 

and more accurate reconstructions. 

 

5.3. Precession of Normalized Born Field in Heterogeneous Media 

The model from chapter 5.2.2 was used to generate two sets of synthetic measurement 

data, differing only in the optical properties of the mouse leg; one with the heterogeneous 

optical properties listed in Table 6, the other with homogeneous optical properties equal 

to the matching fluid.  Fluorescent and intrinsic measurements were taken with each 

system for one source by a 101 by 101 array of detectors.  

 

The normalized Born field was calculated for each measurement set, and the error 

calculated.  The root mean squared error (RMSE) was found to be 0.2985.   While the 

accuracy of these heterogeneous and homogeneous measurements cannot be determined 
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without experimental measurements, the low precession in the normalized Born field 

measurements between two measurement sets that differ only in the assumption of 

homogeneity shows that the normalized Born field can have errors of at least this 

magnitude introduced by this assumption. However, the normalized Born field did 

significantly reduce the errors introduced by heterogeneous optical properties compared 

to non-normalized measurements, which were found to have an RMSE over 50 times 

larger. 

 

To validate the accuracy of the above homogeneous measurement set, a third 

measurement set was synthetically generated using homogeneous optical properties and 

the method of sources from chapter 5.1.2.  The error between the normalized Born fields 

of the two homogeneous measurement sets was found to be 0.0180.  
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6. Administering and Imaging Multiple Fluorochromes Simultaneously 

There are a variety of commercially available fluorochromes that vary in biological 

target, excitation wavelength and fluorescent wavelength.  Different classes of 

fluorochromes include antibody conjugate probes, nucleic acid probes, cell function 

probes and fluorescent proteins.   The ability to image multiple distinct probes 

simultaneously, and independently reconstruct the distribution of each probe could 

increase the visibility of low contrast targets, and allow researchers to better understand 

relationships between biological processes. 

 

Existing FMT reconstruction techniques can be extended to reconstruct the distribution of 

multiple fluorochromes.  A mixture of two or more fluorochromes with affinities for 

different biological targets would be injected into the subject by a single syringe, and be 

distributed by blood flow and diffusion until interacting with their respective targets.  

These fluorochromes would be chosen to emit light of different wavelength when excited 

by a single excitation wavelength.  Figure 32 shows a synthetic example of intensity vs. 

wavelength for an imaging system with a source of light with peak wavelength λ1, and 

two fluorochromes that fluoresce with peak wavelengths λ2 and λ3. 
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Figure 32. Synthetic Intensity vs. Wavelength Measured at Detector 

Transmission measurements in a typical single fluorochrome system are taken with one 

CCD camera fitted with a band-pass filter.  Transmission measurements in a multi-

fluorochrome system would still be taken by one CCD camera, however this camera 

would have a changeable band-pass filter for each distinct fluorochrome.  Images would 

be acquired using the same procedures for acquiring single fluorochrome FMT images 

[2].  For each source, three separate images would be acquired by a CCD camera with a 

different filter used for each image; One band-pass filter for each peak frequency, λ1, λ2, 

and λ3.  Alternatively, three CCD cameras could be used, each with a different filter, 

resulting in faster acquisition times but potentially introducing errors due to their 

different physical positions.  Either of the above methods would result in three sets of 

measurements: one for the intrinsic illumination at the excitation wavelength, λ1, and one 

for each fluorochrome, λ2 and λ3.  These measurements are collected into a matrix, one 

column for each wavelength, 

λ 

λ1 λ2 λ3 
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 ��
��� , : 	 =  4����
���	 ����
���	 ����
���	5 (80) 

This matrix, �, is of size m by 3 where m is equal to the number of source-detector pairs.  

Since band-pass filters for each peak wavelength do not exclude all of the light from the 

source or other fluorochromes, this matrix is a mixture of the columns of a more 

fundamental matrix, ��, that describes the true photon intensity at the detector from the 

source and each of the fluorochromes.  The matrix �� can be calculated by multiplying � 

by the Moore-Penrose pseudoinverse of the mixing matrix, R, where R is given by 

 % = UΘ�� Θ�� Θ��

Θ�� Θ�� Θ��

Θ�� Θ�� Θ��

V   (81) 

where Θ+, is the coefficient that corrects for the transmittance of �
 thru the filter for �-.  It 
could have appropriately been called Θ��,�� , however this simpler notation is being used 

for convenience.  If no filter is used for λ1 [2], the matrix R can be simplified to 

 % = U1 Θ�� Θ��

1 Θ�� Θ��

1 Θ�� Θ��

V   
(82) 

Multiplying � by the Moore-Penrose pseudoinverse of the matrix R results in the 

unmixed Born field for each fluorescent wavelength, ��, 

 �� = � × %� (83) 

This expression can be expanded to 

 4�:��
� �:��

� �:��
� 5 =  ��:��

�:��
�:��� × c%��� %��� %���%��� %��� %���%��� %��� %��� d (84) 

where %
-�  is the element of R
+
 in the i

th
 row and j

th
 column, �:��

� is the i
th

 column of ��, 



www.manaraa.com

63 

 

and �:��
 is the i

th
 column of �. The matrix �� can be normalized to obtain an 

approximation to the normalized Born field by performing an element-wise division of 

the first column of �� into the other columns of ��, 

 ����
��� , ∶	 =  ��:��
� �
���	�:��
� �
���	 �:��

� �
���	�:��
� �
���	� (85) 

The matrix ��� is of size m by 2 where m is equal to the number of source-detector pairs.  

This matrix can then be used to solve for the concentration of fluorochrome using many 

standard methods of FMT reconstruction, including the method of projections, singular 

value decomposition, and SVD-KR.  More generally, the solution can be written as 

 �̂ = �
� ��� (86) 

The resulting matrix �̂ will be of size n by 2, where n is equal to the number of voxels in 

the forward problem.  Each column of �̂,  �̂
, is a vector representing the concentration of 

the fluorochrome with fluorescent wavelength �
��.  

 

6.1. Results 

A phantom was created from the Digimouse dataset, and two different types of 

fluorochromes were synthetically injected.  To test the ability of imaging multiple 

fluorochromes to enhance the image quality for low contrast targets, the fluorochromes 

were assumed to have a concentration 4 times greater in their target than the surrounding 

tissue.  The low contrast makes identification of the target difficult in the reconstructed 

image; however, when two or more fluorochromes are imaged simultaneously, the 

background can be canceled out to increase the contrast of the target. 
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A measurement dataset with signal mixing was generated using the phantom.  The dataset 

was reconstructed using row-wise SVD-KR reconstruction.  The results for a slice of the 

reconstruction that contains both targets is shown in Figure 33.   The results indicate that 

imaging using multiple fluorochromes can allow for enhanced detection of low contrast 

targets. 
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 Original Reconstruction 

Fluorochrome 1 

  

Fluorochrome 2 

  

Fluorochrome 1 

and 2 Combined - 

Variations 

Colored 

  

 

Figure 33. Multi-fluorochrome Imaging with Contrast Enhancement 
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7. Parallel Processing Implementations 

Parallel computing allows for multiple processors to simultaneously carry out 

calculations.  This allows for increased reconstruction speed and for reconstructions of 

large numbers of voxels using large imaging datasets.  Parallel reconstruction algorithms 

have the potential to increase reconstruction resolution, reconstruction image quality and 

imaging volume. 

 

7.1. Parallel Reconstruction by SVD-KR 

SVD-KR reconstruction can be implemented in parallel environments, allowing for 

decreased reconstruction times.   To evaluate the performance of SVD-KR algorithms in 

a parallel environment,  reconstructions were performed with different numbers of 

processor cores in a shared memory environment.  The results of these reconstructions 

are shown in Table 7 and Figure 34 below.  These results show that both row-wise SVD-

KR and column-wise SVD-KR see performance gains in a parallel environment.  

However, because of communication overhead and a serial SVD algorithm, the gains are 

not proportional to the number of processor cores used. If implemented using a parallel 

SVD algorithm,  larger speed increases would be expected. 
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Table 7. SVD-KR Parallel Reconstruction Time and Relative Speed 

Voxels 

Source-

Detector 

Pairs Sources Detectors 

Processor 

Cores 

Row-Wise  

SVD-KR 

Reconstruction 

Column-Wise 

SVD-KR 

Reconstruction 

Time Speed-up Time Speed-up 

1728 331776 576 576 1 66.6 100% 52.9 100% 

1728 331776 576 576 2 51.4 129% 39.2 135% 

1728 331776 576 576 3 48.0 139% 35.2 150% 

 

 

Figure 34. SVD-KR Parallel Reconstruction Relative Speed 

 

7.2. Two-Stage Approach for Larger Imaging Volumes 

A two-stage approach could be utilized to reconstruct larger imaging volumes.  In this 

approach, the imaging volume is initially reconstructed with low resolution, and the 

resolution of a selected region is subsequently enhanced by a second reconstruction.  A 

simple 2-D example of region of interest enhancement is shown in Figure 35. 
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Figure 

This algorithm could be parallelized by having each computer independently refine a 

different region of the imaging chamber.  Once all of the regions in

where enhanced, they could be combined into a

 

Attempts made to create a working algorithm ran into problems

resolution in the region of interest created a twofold problem: the condition n

weight matrix significantly increased, while the 

regions increased the model erro

error, reconstruction error

quality.  This algorithm is presented here 

it will allow someone to improve
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Figure 35. Mesh Refinement in Region of Interest 

This algorithm could be parallelized by having each computer independently refine a 

different region of the imaging chamber.  Once all of the regions in the imaging chamber 

where enhanced, they could be combined into a single high resolution image.

Attempts made to create a working algorithm ran into problems.  

resolution in the region of interest created a twofold problem: the condition n

weight matrix significantly increased, while the low resolution reconstruction of other 

increased the model error.  With the increase in both condition number and 

reconstruction errors increased significantly leading to an overall decrease in image 

quality.  This algorithm is presented here for the interest of the reader, with the hope

improve upon it in the future. 

 

This algorithm could be parallelized by having each computer independently refine a 

the imaging chamber 

high resolution image. 

.  Increasing the 

resolution in the region of interest created a twofold problem: the condition number of the 

reconstruction of other 

number and model 

overall decrease in image 

, with the hope that 
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7.2.1. Implementing SVD Region of Interest Enhancement 

To enhance the resolution in the region of interest, the matrix W will need to be updated; 

consequently, the  SVD of W will need to be updated for reconstruction.  Calculating the 

singular value decomposition of the matrix W as shown in (30) can be intensive in both 

computational and memory requirements for the large, overdetermined matrices needed 

for a high resolution FMT reconstruction.  Since the SVD of the matrix W is already 

known from the initial low resolution reconstruction, the SVD of W can be updated 

directly, as opposed to updating W and recalculating its SVD;  this can significantly 

reduce the computational and memory complexity of reconstruction when W is 

overdetermined. 

 

7.2.2. SVD Column Removal Update 

Refining the reconstruction resolution in a small region of interest requires the 

modification of the matrix W after initially calculating the singular value decomposition.  

To remove the original voxels in this region from the forward model, columns of data 

need to be removed from the matrix W and the singular value decomposition of this new 

matrix W’ is calculated.  Instead of recalculating the singular value decomposition of the 

matrix W’ from the entire matrix W', the known singular value decomposition of W can 

be updated with the newly appended data, significantly reducing the computational 

complexity. This method will work for removal of any set of arbitrary columns, however 

to simplify the formalism without loss of generality a set of sequential columns will be 

removed in this example.  Given a matrix W of size m by n, for which the rank-r singular 

value decomposition is known, 
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 � = ��I� (87) 

If an array of columns � of size m by Δ! is removed from W, 

 � =  ���
�   �   ��

�� (88) 

 �′ =  ���
�   ��

�� (89) 

 

Figure 36. Removing Columns from the Weight Matrix 

The known singular value decomposition of W can be updated to obtain the singular 

value decomposition of matrix W’, 

 �′ = �′�′I′� (90) 

First, remove the columns of V
T
 that correspond to the columns of D, these columns are 

at the same indexes in the matrix V
T
 as the matrix W. 

 I� =  �I��  I$�   I��� (91) 

��

� � 

�′ 

m 

∆n 

n 

��

� 
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 I.�
� =  �I��  I��� (92) 

This operation causes a loss of orthogonality in the matrix I.�
� .  To restore orthogonality, 

the matrix I.�
�  can be decomposed into an orthogonal and an upper triangular matrix by 

the QR decomposition, 

 e,% 
/0fg  I.�

�  (93) 

where Q is an orthogonal basis of I.�
� , and R is an upper triangular matrix.  W’ can then 

be rewritten as 

 �� = ��I′� = ���e%	� = ��%�e� = �#e� (94) 

Where # = �%�.  U and Q
T
 are both orthogonal matrices however, A is not diagonal.  To 

make A diagonal, its singular value decomposition is calculated, 

 # = �%�%I%� (95) 

W’ can then be written as 

 �� =  ���%�%I%�	e� =  ���%	�%�eI%	� (96) 

The final formulation for W’ is therefore 

 �� = ����I′� (97) 

where 

 �� = ��% (98) 

 �� =  �% (99) 

 I� =  eI% (100) 

This method is to the best of my knowledge a new result.  The advantages of this method 

is that it allows the singular value decomposition of W’ to be determined to a high degree 

of accuracy by calculating the singular value decomposition of A.  Since the size of A can 
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be significantly smaller than W’, this method can significantly decrease the computational 

and memory complexity of updating the singular value decomposition of a matrix when 

columns of data are removed.   

 

7.2.3. SVD Column Addition Update 

Refining the reconstruction resolution in a small region of interest requires the 

modification of the matrix W after initially calculating the singular value decomposition.  

To incorporate the new voxels in this region into the forward model, columns of data 

need to be appended to the matrix W and the singular value decomposition of this new 

matrix W’ is calculated.  Instead of recalculating the singular value decomposition of the 

matrix W’ from the entire matrix W’, the known singular value decomposition of W can 

be updated with the newly appended data,  significantly reducing the computational and 

memory complexity. Given a matrix W of size m by n, for which the rank-r singular value 

decomposition is known, 

 � = ��I� (101) 

If an array of new columns T of size m by Δ! is appended to W, 

 �� =  ��  T� (102) 
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Figure 37.  Appending Columns to the Weight Matrix 

the known singular value decomposition of W can be updated to obtain the singular value 

decomposition of matrix W’, 

 �′ = �′�′I′� (103) 

First, let [21] 

 h = ��T (104) 

 i = �M − ���	T = T − �h (105) 

L is then the projection of C onto the orthonormal basis U, and H is the component of C 

orthogonal to U.  Next, find the QR decomposition of H [21], 

 
,j 
/0fg  i (106) 

where J is an orthogonal matrix, and K is an upper triangular matrix.  W’ is equal to [21] 

� � 

�′ 

m 

n ∆n 

n' 
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 �� =  ��  T� =  ��  
� $� h
0 j( $I 0

0 M(� (107) 

Upon inspection, the left and right matrices in the matrix product are orthogonal, 

however the middle matrix, denoted Q, is not diagonal.  To make Q diagonal requires 

finding its singular value decomposition [21], 

 �/ , �/ ,I/  
12$fkg  e  where   e = $� h

0 j( (108) 

The updated singular value decomposition is therefore [21] 

 �′ = �′�′I′� (109) 

where [21] 

 �� =  ��  
��/ (110) 

 �� = �/ (111) 

 I� =  $I 0
0 M( I/ (112) 

This procedure takes lD�� + !	
� + ��Δ!	�E time, most of which is for the matrix 

multiplications that rotate the subspace shown in (101), (102) and (103) [21].  
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8. Conclusions 

Since SVD-KR reconstruction significantly reduces the computational complexity and 

memory requirements for reconstruction of overdetermined imaging datasets, imaging 

systems with larger detector arrays, higher spatial sampling, and a larger number of 

sources can be reconstructed; this improves the information content of the measurements 

and decreases the ill-posedness of the inverse problem, leading to increased resolution 

and accuracy for in vivo FMT imaging [2].  Compared to reconstruction with SVD, the 

SVD-KR reconstruction method decreased reconstruction time up to 25 times and 

decreased memory usage by up to three orders of magnitude.  Consequently, SVD-KR 

reconstruction allows for fast, high resolution reconstructions with low reconstruction 

error. To make best use of this new reconstruction method, FMT imaging systems would 

be designed to have a large number of sources and detectors.  Future research will be 

necessary to design a FMT imaging system that takes advantage of SVD-KR for 

reconstructions of large detector arrays with a large number of sources.   

 

The SVD-KR reconstruction method can be used for a variety of forward models.  In one 

compatible model, CT imaging data from a combined CT/FMT system could be 

segmented into separate tissues; the known optical properties these tissues along with 

their 3-D shape could allow for more accurate approximations to the photon density in 

vivo.  Paired with improvements in the accuracy of the forward model, SVD-KR could 
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allow for FMT reconstructions of sufficient resolution and quality to be clinically 

meaningful, and significantly expand the applications of FMT. 
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